

FÍSICA	LEI DE OHM
--------	------------

NOME	
ESCOLA_	
EQUIPE	SÉRIE
PERÍODO	DATA

MATERIAL

- 1 placa de circuito
- 1 fonte (pilha)
- 3 resistores (1.000 Ω , 1.500 Ω e 3.300 Ω)
- 1 painel com medidor (voltímetro e miliamperímetro)

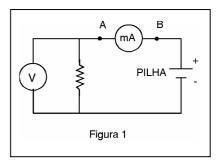
INTRODUÇÃO

Alguns condutores conduzem melhor a eletricidade, outros menos. Na experiência "o caminho da Eletricidade" percebemos que o cobre conduzia melhor que a liga de níquel-cromo. Fazendo a analogia com a corrente de água notamos que canos grossos conduzem mais água que canos finos. Além disso, a água que provém do potencial de uma caixa-d'água elevada passa com maior fluxo do que quando provém de uma caixa próxima ao chão. Faz-se a seguinte analogia entre o fluxo da água de uma caixa-d'água até a torneira e a corrente elétrica:

Circuito de água	Altura da caixa	Cano grosso (ou fino)	Vazão da água	
Circuito elétrico	Diferença de potencial ou voltagem	Resistência pequena (ou grande)	Corrente elétrica	

Nesta analogia, a afirmação "quanto mais alta a caixa dágua e mais grosso o cano, maior será a vazão" equivale a "quanto maior a diferença de potencial elétrico e menor a resistência, maior será a corrente elétrica".

Georg Simon Ohm estabeleceu em 1827 que num circuito elétrico a intensidade de corrente elétrica (I) é proporcional à diferença de potencial (ou voltagem) aplicada (V).


V = RI

Onde a constante de proporcionalidade R é a "resistência elétrica", medida em Ohm (W). A diferença de potencial é medida em volt (V) e a corrente elétrica em ampère (A). A indústria produz "resistores" que são corpos com resistência definida, adequados ao controle da corrente em circuitos eletrônicos. A resistência vem marcada em um código de cores (ver tabela no verso). As primeiras 2 cores dão dois dígitos do valor (ex: amarelo, preto = 40). O seguinte é a potência de 10 pela qual devemos multiplicar (ex: marrom = $10^1 = 10$). A última faixa é a tolerância de fabricação. Desta forma, amarelo, preto, marrom e dourado significam $40x10 \pm 5\%$, ou seja, $(400 \pm 5\%)\Omega$.

PROCEDIMENTO

- Leia o código de todos os resistores sobre sua mesa.
- Monte o circuito da figura 1:
- Ligue os terminais do amperímetro (bananinha), nos pontos A e B.
- Ligue o voltímetro (jacarés) nos terminais do resistor.
- Ligue a fonte e anote os valores de corrente elétrica (amperímetro) e diferença de potencial (voltímetro) para os três resistores dados na tabela abaixo.

OBSERVAÇÃO: conforme a posição da chave o mesmo medidor funciona como amperímetro ou voltímetro.

Resistor	1.000 Ω	1.500 Ω	3.300 Ω
Diferença de potencial (V)			
Corrente elétrica (mA)			
Resistência calculada (Ω)			

A seguir, encontre o valor do resistor calculado utilizando a fórmula da lei de Ohm:

R=V/I

Compare os valores calculados pela lei de Ohm com os valores que foram lidos no resistor. Explique por que pode ocorrer alguma diferença entre eles.

CÓDIGO DE CORES DAS RESISTÊNCIAS

1^a cor: valor 2^a cor: valor

3ª cor: potência de 10 a multiplicar ou número de zeros (10¹ = 10; 10² =100, etc.)

4ª cor: tolerância (5% ou 10%)

Preto	Marrom	Vermelho	Laranja	Amarelo	Verde	Azul	Violeta	Cinza	Branco
0	1	2	3	4	5	6	7	8	9

Tolerância: Ouro \rightarrow 5% Prata \rightarrow 10%

PRECISÃO DE VALORES

Nunca temos certeza do resultado de uma medida que fazemos. Por exemplo, se medimos a altura de um colega de classe podemos errar para mais ou para menos, dependendo da maneira como procedemos. Da mesma maneira o fabricante dos resistores não tem certeza do valor da resistência - por esta razão ele indica a tolerância: 5% ou 10% a mais ou a menos no valor indicado pelo código, indicados pelas cores ouro ou prata. Esta imprecisão pode justificar diferenças que ocorrem entre o valor calculado e aquele marcado no resistor.